B.Sc. B.Ed SEM-II Examination: 2020

Course-SEC 1.1

Subject: Mathematics (Discrete Mathematics and Graph Theory)

Time: 2 Hours	F.M. 30
Time: 2 Hours	F.M. 3

 $(5 \times 6 = 30)$

Answer any *six* questions

1.	(a) Prove that intersection of two equivalence relations is again an equivalence relation	. 5
	(b) Give an example to show that the Union of two equivalence relations may	not be an
	equivalence relation.	(3 +2)
2.	Design a simple circuit connecting two wall switches and a light bulb in such a way that either	
	switch can be used to control the light independently.	5
3.	. (a) Define Lattice. (b) Draw the Hasse diagram of the Poset (S, \leq) where, S is the set of all	
	positive divisors of 72 and $a \le b$ means 'a is a divisor of b' for all a, b in S.	(1 +4)
4.	(a) What is non atomic Boolean algebra?	
	(b) Show that, every finite Boolean algebra is atomic.	(1 +4)
5.	(a) State Pigeonhole principle.	
	(b) Show that among any $(m + 1)$ integers selected from $\{1, 2, \dots, 2m\}$ there must be an integer	
	that divides one of the other integers.	(1 +4)
6.	State and prove principles of Inclusion and Exclusion.	5
7.	Let G be a simple graph with 50 vertices. If each vertex has degree at least 25, then show that G	
	is a Hamiltonian graph.	5
8.	Let G be a graph with 13 vertices and 7 connected components. Then show that G has at least 6	
	edges.	5